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Abstract. Most analytical formulas used to model moisture retention in unsaturated 
porous media have been developed for the wet range and are unsuitable for 
applications in which low water contents are important. We have developed two 
models that fit the entire range from saturation to oven dryness in a practical and 
physically realistic way with smooth, continuous functions that have few parameters. 
Both models incorporate a power law and a logarithmic dependence of water content 
on suction, differing in how these two components are combined. In one model, 
functions are added together (model "sum"); in the other they are joined smoothly 
together at a discrete point (model "junction"). Both models also incorporate recent 
developments that assure a continuous derivative and force the function to reach zero 
water content at a finite value of suction that corresponds to oven dryness. The models 
have been tested with seven sets of water retention data that each cover nearly the 
entire range. The three-parameter sum model fits all data well and is useful for 
extrapolation into the dry range when data for it are unavailable. The two-parameter 
junction model fits most data sets almost as well as the sum model and has the 
advantage of being analytically integrab!e for convenient use with capillary-bundle 
models to obtain the unsaturated hydraulic conductivity. 

Introduction 

In numerical modeling of water flow and solute transport 
in unsaturated porous media a simple analytical function is 
desirable and often necessary for representing the water 
retention curve, the relation between water content and 
matric suction. Usually, a mathematical function is chosen 
and its parameter values are determined by a regression 
analysis on the available data [Bruce and Luxmoore, 1986]. 

Various functions that describe the water retention curve 

are in use [e.g., Brooks and Core),, 1966; van Genuchten, 
1980]. Generally, they are successful at high and medium 
water contents but often give poor results at low water 
contents [Nimmo, 1991; Ross et al., 1991]. This may pose 
little difficulty for some applications, such as wetlands 
studies or humid region agriculture, but others, including 
water flow and contaminant transport in arid regions, require 
a more accurate representation of the hydraulic characteris- 
tics over the whole range of saturation. For fine-textured 
media the high-suction range can be important even with 
water content remaining high. 

A •hrther motivation for creating a whole range model of 
water retention is that there are few sets of measured data 
containing observations in the range of suction greater than 
1.5 x 104 cm water, the value often assumed as the maxi- 
mum for water extraction by plants. Because measurements 
at this value can be difficult and time consuming in order to 
ensure equilibrium, many data sets end at suctions even 
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closer to zero. Thus it would be of great value to have a 
model that can reliably extrapolate the water retention curve 
beyond the driest measured point. 

Another issue related to traditional water retention models 

is that they either do not allow water content to be zero, an 
assumption that is physically unrealistic [Nimmo, 1991], or 
they allow it to be zero only at infinite suction. In practice, 
zero water content is defined as oven dryness, which corre- 
sponds to a finite suction. Ross et al. [1991] proposed a 
correction of the Brooks-Corey model that makes water 
content 0 = 0 at a finite value of suction •a approximating 
oven dryness. The value of q•,t depends on the temperature, 
pressure, and humidity in which the soil is dried' unfortu- 
nately, the procedure is imperfectly standardized and can be 
subject to different conditions in different laboratories 
[Gardner, 1986]. For the typical case of oven drying at 
10, -110øC in a room at 50•.• relative humidity how'ever, the 
value ofqra = 10 7 cm water proposed by Ross et al. [1991] 
is reasonably accurate. The Ross et al. [1991] correction 
improves the modeling of soil water retentivity in the low 
water content range, but it leaves room for further improve- 
ments in terms of goodness of fit and physical inlerpretation, 
especially regarding modeling over the whole range of satu- 
ration. 

A modification of the van Genuchten model has been 

proposed by Campbell and Shiozawa [1992] for improving 
fits to dry range data. Their equation fits the data very well 
in the range considered, but it has tbur parameters, one more 
than the most commonly used form of the van Genuchten 
equation. Other disadvantages are that the water content 
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theoretically goes to zero only at infinity and that it tends to 
an infinite value when the suction approaches zero. 

In the present study we investigate possible improvements 
in modeling soil water retentivity with the goal of developing 
practical models, still physically realistic, that can represent 
with the minimum possible number of parameters the reten- 
tion curve over the entire range of saturation. This investi- 
gation has led to two models based on the same assumptions 
but differing in mathematical details. 

Theory 
For physical realism and to prevent problems in numerical 

calculations, a water retention model must be analytically 
represented by a continuous function with at least a contin- 
uous first derivative. In this paper, functions with these 
characteristics will be designated as smooth. 

In general, a second-order continuous function would be 
desirable in order to guarantee the specific water capacity 
function, defined as dO/d•, to be a smooth function also. In 
this study, however, we address the less strict requirements 
that the retention curve be smooth and the specific water 
capacity be continuous. 

General Features 

Both models proposed here are based on a modified form 
of the Brooks and Corey [1966] model with residual satura- 
tion taken as zero, which is also equivalent to the equation 
used by Campbell [1974]. This formula is a power law for 
matric suction xt r greater than the air entry value •o and can 
be written 

0 
---= 1 0--<•--<•o 
Os 

(1) 

where 0 is the volumetric water content, and Os is the 
saturated water content or the maximum value of 0 if air 
trapping is considered. The parameters •o, and A, and 
sometimes Os are usually fitted to measured data for each 
soil. 

We chose the power law function as a starting basis 
because of its simplicity and its demonstrated ability to well 
represent the retention curve in the middle range of satura- 
tion [Brooks and Corey, !966]. Another advantage is that it 
can be physically interpreted in terms of self-similar scaling 
of soil pore sizes, as Tyler and Wheatcraft [1990] have 
shown. 

One of the shortcomings of the Brooks-Corey model is 
that it presents a sharp discontinuity in the derivative at •o- 
As a first modification of (1), we have adopted the parabolic 
correction near saturation proposed by Hutson and Cass 
[1987], which replaces the sharp corner with a smooth curve. 
The result is a smoothly joined two-part retentivity equation 
with no more parameters than the original equation. 

The Brooks-Corey model, however, does not adequately 
represent the data at very high suctions; the simple power 
law consistently overestimates the water content in this 
range [Campbell and Shiozawa, 1992]. This may be a matter 
of the Brooks-Corey model representing capillarity better 
than adsorption. 

As a second modification to (1), we have adopted the 
correction for the dry end of the curve proposed by Ross et 
al. [1991] that makes water content 0 = 0 at a finite value of 
suction •a- Given a water retention equation 0 
such a correction consists simply of modifying it to 0 
f(•) - f(• a), again not adding any extra parameters to the 
original model if •a is known. 

The main modification of the Brooks-Corey equation that 
we propose is based on the assumption that in the dry range 
of the water retention curve the water content becomes 

approximately proportional to the logarithm of suction. This 
assumption is consistent with the Bradley [1936] adsorption 
theory which considers adsorbed molecules to build up in a 
layered film, in which the net force of electrical attraction 
diminishes with each additional layer. Orchiston [1953] als0 
tested the proportionality of 0 to the logarithm of suction and 
found that it gave good fits to low-0 measurements. There 
are then two different behaviors to be represented in our soil 
water retention models: a power law behavior at high and 
medium water content where the capillary retention mecha- 
nism is dominant and a logarithmic behavior at low water 
contents where adsorption is dominant. 

The two models we propose here differ in how these two 
components are combined: The sum model considers the 
two functions added, whereas the junction model considers 
the two components jointed together. The two models are 
characterized by a different mathematical formulation and a 
different number of fitting parameters that result in some 
differences in the goodness of fit and differences in applica- 
bility for various purposes. 

It should be noted that every analytic model has several 
parameters, some of which can be directly determined from 
measurements while the others have to be fitted to a whole 
data set. Some parameters may be directly determined in 
some cases and fitted in others. In this paper we designate 
the number of parameters of a model as the number of fitted 
parameters. For consistency the fitted parameters here are 
counted as those that would always be fitted; in particular, 
0.• and •a are not considered as fitted parameters but as 
known values. Furthermore, on account of the different role 
played by the parameters in the different formulations, the 
parameter values obtained through the regression analyses 
are not expected to be the same, neither for the sum and 
junction models nor for the Brooks-Corey model from which 
they are derived. 

Formulation of Three-Parameter Sum Model 

The first model combines the power function with the 
logarithmic function by adding them as follows 

•= O1 = 1 - c 0 <-q• <--Wi 
Os 

--- = O It = -- + a In 
Os 

The term 01 represents the Hutson and Cass [19871 
parabolic curve that joins to the Brooks-Corey function at 
the junction point Wi. The Ross et al. [ 1991] correction can 
be recognized in the expression for 

If 0• and Wa are known, the number of unknown param- 
eters in (2) is five (c, •i, •,,, A, a), but two of these are 
determined by the conditions that ensure the continuity of 
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>oth the function and its first derivative at •i, leaving just 
:hree free parameters. Such continuity conditions are ex- 
.•ressed by the system of two equations 

0 •('t• i) = 0 u(• •) 

00• O0•s 

O"Xi / (a'tti) -- -• (Xtri) 

(3) 

Considering two of the unknown parameters as dependent 
variables and the remaining three as independent variables, 
{3) allows us to express any two chosen parameters as 
functions of the others. Substituting these expressions for 
the two dependent parameters into (2) leaves three parame- 
ters, whose values are then optimized through a regression 
analysis on the available data. In our test of the model the 
two parameters c and a are explicitly determined as analyt- 
ical functions of go, A, and •i. These three remain then the 
only free parameters to be fitted. An advantage of this 
formulation is that the relationships among the parameters 
can be solved analytically with respect to the dependent 
ones. 

The sum model, defined in (2), globally represents then a 
continuous analytical function with continuous first deriva- 
tive that can be easily inserted in a numerical scheme with 
three fitting parameters, as many as the usual version of the 
van Genuchten [1980] model. 

Formulation of Two-Parameter Junction Modal 

The second model combines the power law and the 
logarithmic function with a junction rather than a summation 

--=0s = 1-c O<-•<•i 
Os 

0s 0u •i <• -<•j (4) 

•=Oa•=a In •j <•<-•a 
O• 

In this case there are six parameters and four conditions to 
be satisfied in order to impose the continuity of the global 
function and its first derivative at the two junction points. 
The four parameters c, •i, •j, and a are determined as 
analytical functions of the remaining two through the equa- 
tions 

0 !(X•r i) '- 011( xIr i) 
00• OOu 

on(%) = ore(%) aOn (•J) = aOnt (%) 
Applying a procedure analogous to the one described for the 
sum model, the junction model may be characterized by two 
independent parameters, •o and A. This is as many as the 
original Brooks-Corey model and one fewer than the sum 
model. 

A cubic polynomial could be employed for the wet range 
instead of the parabolic correction proposed by Hutson and 
Cass [1987]. That could have a possible advantage in guar- 
anteeing second-order continuity of the whole function and 

Table 1. Summary of Soil Textural Classes 

Measured Properties 
Textural 

Soil Class Sand Clay Silt 

Palouse a Silt loam 0.113 0.205 0.682 
Palouse B a Silty clay 0.093 0.468 0.439 
Walla Walla a Silt loam 0.228 0.139 0.633 
Salkum a Silt loam 0.190 0.225 0.585 
Royal a Sandy loam 0.536 0.145 0.319 
L-soil a Sand 0.888 0.051 0.061 
Rothamsted t' Loam Not available 

aFrom Campbell and Shiozawa [1992]. 
øFrom Schofield [1935]. 

especially a zero second derivative at saturation. This func- 
tion is not used in either the sum or the junction model, 
however, because an attempt to incorporate it in order to 
have a continuous second derivative for the whole range 
without adding extra parameters did not lead to an analytical 
determination of the dependent parameters. 

The junction model has the advantage that it is integrahie 
in closed form for use in a conductivity model such as that of 
Mualem [1976]. According to this model, the relative hy- 
draulic conductivity, the ratio between the unsaturated and 
saturated hydraulic conductivity, can be expressed as 

•0•• •2•ø) Kr(O) = 12(Os) 
where 

and 

I(0) = Ira(O) 0 < _ 0 < Oj 

I(0) = In(O) Oj < 0 -< Oi 

I(0) = I•(0) Oi- < 0 -< Os 

Im(O)=• exp - 1 

[11(0) = IIIl(OJ) nt' xiI,'• • q- i' 

I1(0) = Ill( O i) + '•o 1 -- 
1/2 

(7) 

Without tests against reliable data the accuracy of the 
prediction of unsaturated hydraulic conductivity through !7) 
and (8) is not known. 

Results and Discussion 

Both models presented above were tested with data from 
seven soils of a wide range of texture [Campbell and 
Shiozawa, !992; Shiozawa and Campbell, 1991; SchofieM, 
1935], as listed in Table I. These data sets have been chosen 
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Figure 1. Model sum fitted to six data sets from Campbell and Shiozawa [1992] and one data set 
(Rothamsted) from Schofield [!935]. Curves and data are plotted on both semilog and log-log scales. 

because they cover a large range, almost six orders of 
magnitude in suction, from nearly saturated to nearly oven 
dry. For each data set, both models have been fitted to the 
data using the Standards Time Series and Regression Pack- 
age nonlinear least squares analysis [Donaldson and To, on, 
1983]. The parameters whose values are determined through 
the regression analyses are •o, •, and xFi for the sum 
models and •o and k for the junction model. 

We did not treat Os and •a as free parameters but rather 
assigned them values based on inspection of the data. In 
many cases, Os will be known or well approximated by 
measurements, and •a can be computed if the conditions of 
oven drying are known. Regarding xlra, for the chosen data 
sets, since each includes measurements that closely ap- 
proach zero water content, a short linear extrapolation on a 
semilog plot provided a suitable value of 107 cm water for 
the six soils from Campbell and Shiozawa [ 1992] and a value 
of 5 x 107 cm water for the Schofield [1935] data. This 
difference probably results from different conditions of water 
content measurements. As a test, we did some analyses with 

x!ra as a free parameter, finding that the values of the other 
fitted parameters had a negligible difference from the case 
with •,/fixed, and the optimized values of •a were very 
close to the chosen ones. 

Figure 1 shows results of fitting the three-parameter sum 
model to the seven chosen data sets, while Figure 2 shows 
results obtained using the two-parameter junction model. 
The figures include the results plotted in both semilog and 
log-log forms, since the different scales highlight different 
characteristics of the data and the fitted functions. 

Tables 2 and 3 present the values of the parameters 
determined by the regression analysis as well as the resulting 
residual standard deviations or. The residual standard devi- 
ation is calculated as the square root of the residual sum of 
squares divided by the number of degrees of freedom [Drap- 
er and Smith, 1981]. 

As the graphs and tables show, the fitting is generally very 
good for both models. In particular, the sum model fits all 
data sets well. The junction model fits well the Palouse, 
Palouse B, Walla Walla, Salkum, and Rothamsted data. For 
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Figure 2. Model junction fitted to six data sets from Campbell and Shiozawa [1992] and one data set 
(Rothamsted) from Schofield [!935]. Curves and data are plotted on both semilog and log-log scales. 

7O5 

Table 2. Summary of Soil Parameters and Standard 
Deviations From the Fitting of Model Sum to the 
Seven Data Sets 

Os, xI'ro , • i , 
Soil vol/vol cm water A cm water vol/vol 

Palouse a 0.44 22.8 0.47 89.3 0.0088 
Palouse B a 0.55 1.1 0.15 19.6 0.0201 
Walla Walla a 0.39 35.6 0.61 104.6 0.0062 
Salkum a 0.48 83.6 0.29 185.7 0.0166 
Royal a 0.35 72.7 1.24 137.2 0.0045 
L-soil a 0.18 32.7 1.83 57.1 0.0034 
Rothamsted b 0.51 128.2 0.43 304.9 0.0229 

The parameters 0s and 4t,/were fixed in accordance with 
measured data. 

axP d = I x 10 7 cm water. 
bxpa = 5 x 107 cm water. 

the other two soils, although the values of the standard 
deviation are still low, the junction model works less well in 
the low water content range, evident mainly on the log-log 
plots. It is expected that in some degree the junction model 
will provide fits inferior to those of the sum model, since it is 
characterized by one fewer parameter. 

The high quality of the fits at low theta supports the 
importance of the logarithmic component. The log-log plots 
in Figures I and 2 show how the observed data deviate from 
the simple power law tbrmula, dropping faster to zero water 
content, whereas both the sum and junction models follow 
the real data behavior. This result is clear also from Figure 3 
which shows the sum, junction, and Brooks-Corey models 
fitted to one of the soils. 

For the junction model the deviation from the power law 
begins exactly at the second junction point •;, where the 
function becomes completely logarithmic. This point is 
analytically determined from (5) as • exp C-l/A). The 
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Table 3. Summary of Soil Parameters and Standard 
Deviations From the Fitting of Model Junction to the 
Seven Data Sets 

Os, Wo, Wi, 
Soil vol/vol cm water A cm water vol/vol 

Palouse a 0.44 43.4 0.25 1.9 x 105 0.0089 
Palouse B a 0.55 16.7 0.16 2.0 x 104 0.0210 
Walla Walla a 0.39 44.6 0.28 2.9 x 105 0.0086 
Salkum a 0.48 131.2 0.29 3.3 x 105 0.0159 
Royal a 0.35 53.8 0.41 8.8 x 105 0.0154 
L-soil a 0.18 13.3 0.33 4.7 x 105 0.0098 
Rothamsted b 0.51 176.3 0.34 2.6 x 106 0.0227 

The parameters Os and ½a were fixed in accordance with 
measured data. Wj has been calculated from the fitted 
parameters •o and ,•. 

aw d = 1 x 107 cm water. 
bWa =5 x 10 ?cmwater. 
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Figure 4. Model sum fitted to data of Walla Walla soil. The 
power law and logarithmic components, both including the 
Ross et al. [1991] correction, are plotted separately. 

calculated values of Wj for all the soils examined are given in 
Table 3. 

Because the sum model does not have a distinct transition 

from the power law to the logarithmic function it is not 
possible to determine analytically a single point at which 
deviation begins. The two functions added behave as ex- 
pected, however, with each of the two behaviors dominating 
a different range of suction. The results in the example of 
Figure 4, qualitatively similar to the ones for the other soils, 
show that at lower suctions the power law component has a 
greater influence but at higher suctions the logarithm, going 
to zero more slowly, takes over. 

In order to assess the ability of the model to extrapolate 
observed data in the dry range, regression analyses have 
been performed on subsets of data that exclude all measured 
points with suction greater than a certain cutoff value W c- 
Where the'value of We is known, this procedure is in effect 
less an extrapolation than an interpolation between the 
measurements and We, but we refer to it as extrapolation 
since the modeling is out of the range of measured data. We 
did these calculations for both models with all seven soils 
over the possible W c values from the maximum measured W 
to the minimum for which there were adequate data for the 

computations. In each case the resulting curves provided 
good fits to the whole data set for W c values as low as a few 
thousands, or sometimes hundreds, of centimeters water. In 
most cases, model sum produced better extrapolated fits, 
though with the lower W c values, and model junction gave 
better fits for Palouse B, Walla Walla, and Rothamsted. 

Tables 4 and 5 present the residual standard deviations 
computed respectively from the fitting of models sum and 
junction to the whole data sets and to data subsets obtained 
with two cutoff values of different order of magnitude. Note 
that while the regressions are based on the subsets, the 
standard deviations are computed based on all the data. 

As an example, Figure 5 illustrates two of these fits for 
model sum and a cutoff value of 1.5 x 10 4 cm water. The 
results are for two soils: the Royal that showed one of the 
best agreements and the Palouse soil that was the worst. 
Only the results for Rothamsted resembled those for Pal- 
ouse, while results for other soil types resembled those for 
Royal. 

The question of the minimum number of data points or 
minimum W c value required for a given medium is difficult to 
answer here because the seven data sets show considerable 
scatter and are fairly sparse in the wet part of the range. 

Brooks-Corey 
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Figure 3. Comparison of Brooks-Corey, sum, and junction 
models fitted to Palouse B data. 

Table 4. Summary of Residual Standard Deviations 
From the Fitting of Model Sum to Data Subsets 
Containing Only Data With Suction Less Than 
Different Cutoff Values 

Cutoff value Wc, cm water 

Soil 1 x 108 1.5 x 104 5 x 103 

Palous e 0.0088 0.0 ! 40 0.0259 
Palouse B 0.0201 0.0208 0.0206 
Walla Walla 0.0062 0.0069 0.0079 
Salkum 0.0166 0.0170 0.0174 
Royal 0.0045 0.0048 0.0050 
L-soil 0.0034 0.0034 0.0036 
Rotham ste d 0.0229 0.0242 0.0333 

The standard deviations are based on the whole data sets. 
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Table 5. Summary of Residual Standard Deviations 
From the Fitting of Model Junction to Data Subsets 
Containing Only Data With Suction Less Than 
Different Cutoff Values 

Cutoff value •,., cm water 

Soil 1 x 108 1.5 X 10 4 5 X 103 

Palouse 0.0089 0.0102 0.0109 
Palouse B 0.0210 0.0215 0.0225 
Walla Walla 0.0086 0.0095 0.0105 
Salkum 0.0159 0.0160 0.0181 
Royal 0.0154 0.0162 0.0171 
L-soil 0.0098 0.0101 0.0106 
Rothamsted 0.0227 0.0227 0.0229 

The standard deviations are based on the whole data sets. 

Palouse B, for example, was successfully extrapolated with 
model junction and a žIre of 1000 cm water, but this was done 
with only eight data points that appear to have a substantial 
random component from measurement uncertainty. With a 
greater quantity or quality of wet range data, lower values of 
q•,. may be acceptable. 

Palouse 

0.4- 

0.2- 

0.•00 o• • ,,,,I• . ! • •0 • •0 • •0 • •0 • 

16. 

.-, Royal 
o 

o 0.4- 

• , 
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'•o ø lO • lO' lO" lO • 

suction (cm water) 

Figure 5. Comparison, for Palouse and Royal soils, be- 
tween the curves fitted with model sum using the complete 
data sets and using subsets that include only data with 
suction less than 1.5 x 10 4 cm water. 

Conclusions 

We have proposed two models that realistically represent 
the soil water retention curve over the whole range of 
saturation with no more than three parameters. Both models 
are based on a power law function supplemented with a 
logarithmic function relating water content to suction in the 
high suction range. One model combines the power law with 
the logarithmic formula using a summation, w"hereas the 
other combines them using a junction. They both are con- 
tinuous functions with continuous derivatives and have 

simple mathematical formulations. 
The sum model, using three parameters, provides good fits 

over the whole range of saturation for all soil types consid- 
ered. The reliability of this model, particularly in the high 
suction range, is also reflected in the h•gh-quality extrapola- 
tion that it gives when fitted to limited data subsets. The 
results also confirm the appropriateness of the use of a finite 
value of suction for zero water content. 

The junction mežtel gives good fits for most media ana- 
lyzed. With two parameters, as many as the original Brooks- 
Corey model assuming Os to be known, it •mproves the soil 
water retention modeling at low water contents. One of the 
junction model's advantages is that it is analytically integra- 
ble for easy use in a conductivity model such as Mualem's 
[1976]. 

The goodness of fit of both models to measured data 
supports the validity of the assumption of proportionality 
between soil water content and logarithm of suction in the 
low water content range. The combination of this logarith- 
mic dependence with other formulations developed for the 
high water content range produces a model that is practical 
and realistic from saturation to oven dwness. 
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